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The theory of scheduling is concerned with the optimal allocation of scarce
resources to activities over time. Of obvious practical importance, it has been
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the subject of extensive research over the past decades. In view of the fact that
the above description allows for a wide variety of problem types, it should
come as no surprise that the development of the theory has gone hand in hand
with the refinement of a detailed problem classification, for which the ultimate
foundation was laid in the classic book Theory of Scheduling [Conway,
Maxwell & Miller 1967] (see §1.1).

Partly under the influence of their work, the emphasis has been on the
investigation of machine scheduling problems, in which the activities are
represented by jobs and the resources by machines, each of which can process
at most one job at a time. Typically, the number of feasible allocations or
schedules will be finite, but very large. If all the relevant information on jobs,
machines and optimality criterion is known in advance, the scheduling prob-
lem becomes an example of a combinatorial optimization problem, and indeed
most of the techniques developed for such problems have at some point been
applied to scheduling problems.

One of the techniques that has been especially successful is the complexity
classification that results from the theory of 9M®-completeness (see [Garey &
Johnson 1979}, §1.1). This theory allows for a formal interpretation of the
empirical difference between easy and difficult combinatorial optimization
problems, by equating the former group with the problems that are well solv-
able in the sense that their solution requires only time bounded by a polyno-
mial function of problem size, and the latter group with the 9%-hard problems
for which a polynomial algorithm is very unlikely to exist.

The application of 9P-completeness theory in conjunction with various
algorithmic techniques has succeeded in settling the complexity status (‘well-
solvable’ or ‘9P-hard’) of the large majority of the scheduling problems that
occur in a detailed problem classification first published in [Graham, Lawler,
Lenstra & Rinnooy Kan 1979] (see §1.2). We trust that we will be excused for
adhering closely to their classification in this bibliography.

Thus, we first classify scheduling problems according to the type of
machine environment in which they are situated. The simplest such environment
is a single machine, on which job j has to spend an (integral) processing time
p; U = lL...n). An obvious generalization is to assume that each job has to be
executed on any one of m parallel machines, which may be identical, uniform
(machine i processes its jobs at speed s;) or unrelated (machine i is able to pro-
cess job j at speed s;;). Another generalization is to assume that each job may
have to visit more than one machine: if each job requires processing on all m
machines in arbitrary order, the system is called an open shop; if each job has
to visit all machines in a fixed order which is the same for each job, we have a
flow shop; if the orders are fixed but possibly different for each job, we have a
Jjob shop. As the bibliography will partly reveal, flow shops and job shops have
been the traditional domain of operations researchers and industrial engineers,
whereas the study of parallel machine systems has been strongly influenced by
their applicability in computer science.

Within each of these subclasses, we may further classify problem types by
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specifying certain job characteristics. First of all, it is important to distinguish
between the case that preemption (job splitting) is allowed at zero cost and the
case that a job, once started on a machine, must be processed without inter-
ruption until its completion on that machine. Secondly, various types of pre-
cedence constraints may be defined on the job set, that must be respected in
each feasible schedule. Another way to generalize the model is to assume that
job j becomes available for processing at an (integral) release date r; and has
to be completed no later than an (integral) deadline d;; in the basic model, all
ro= 0 and all dj = co. Further, it is often fruitful to consider the special case
of unit processing times, in which all p; = 1.

The final component of the classification scheme is the optimality criterion
adopted. This is usually defined in terms of cost functions f; of the job com-
pletion times C; in a particular schedule; f; may also depend on a given
(integral) due date d; and weight w;(j = 1,..,n). We distinguish between min-
max criteria, i.e., the minimization of maximum cost max; {f ;(C;)}, and min-
sum criteria, i.e., the minimization of rotal cost Z;f;(C;). Important minmax
criteria  are maximum completion time max;{C;} and maximum lateness
max; {C; —d; }; important minsum criteria are fotal completion time 2, C;, total
tardiness 2;max{0,C; —d;}, the number of late jobs Z; (if C;<d; then O else
1), and the weighted versions of these in which the j-th term is multiplied by
w; G = L..,n).

It should be apparent that the number of problems in the above class is
huge. Still, as we shall see below, many interesting problem types are not
included and require special introduction in the bibliography.

In drawing up this bibliography, we have concentrated on publications that
appeared in 1981 or later. For the literature prior to 1981, we refer to the
books and surveys listed in §§1.1,2. We have exercised some judgement in
determining which publications to include; if any reader feels we have over-
looked an important contribution, we would be pleased to hear from him or
her. We have not included papers on parallel scheduling algorithms, as those
are dealt with in one of the other contributions to this volume.

1. BOOKS AND SURVEYS

In this section, we list some books and surveys that will serve as a general
introduction to the area and to the less than recent literature, as well as some
papers that bear on the problem classification.

1.1. Books

RW. Conway, W.L. Maxwell, LW. Miller (1967). Theory of Scheduling,
Addison—Wesley, Reading, MA.

As the first serious book on scheduling theory, this text is now rather out-
dated but still remarkable for the way it mixes deterministic scheduling with
queueing and simulation - a mix that has recently become fashionable again
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(see §11).

K.R. Baker (1974). Introduction to Sequencing and Scheduling, Wiley, New
York.

Although this textbook largely ignores recent issues such as computational
complexity and analysis of heuristics, it does provide a very readable introduc-
tion to the basic results in the area.

E.G. Coffman, Jr. (ed.) (1976). Computer & Job/Shop Scheduling Theory,
Wiley, New York.

This edited collection of papers contains some careful reviews of the state
of the art around 1975, with particularly nice contributions by R. Sethi on
minimizing maximum completion time and by R.L. Graham on the worst case
analysis of heuristics.

A.H.G. Rinnooy Kan (1976). Machine Scheduling Problems: Classification,
Complexity and Computations, Nijhoff, The Hague.
J.K. Lenstra (1977). Sequencing by Enumerative Methods, Mathematical Centre
Tract 69, Centre for Mathematics and Computer Science, Amsterdam.

These Ph.D. theses contain surveys of optimization algorithms and com-
plexity results. For some single machine, flow shop and job shop problems,
branch-and-bound algorithms are developed and evaluated.

M.R. Garey, D.S. Johnson (1979). Computers and Intractability: a Guide to the
Theory of NP-Completeness, Freeman, San Francisco.

The first textbook on computational complexity offers a well-written intro-
duction to the tools and techniques in this area, with an extremely useful sur-
vey of MP-completeness results at the end.

S. French (1982). Sequencing and Scheduling: an Introduction to the Mathemat-
ics of the Job-Shop, Horwood, Chichester.

Aimed at the same audience as [Baker 1974] (see above), this text covers
most of the classical scheduling theory, including computational complexity
and analysis of heuristics but with less emphasis on parallel machine models.

M.A H. Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.) (1982). Deter-
ministic and Stochastic Scheduling, Reidel, Dordrecht.

The proceedings of the NATO Advanced Study and Research Institute on
Theoretical Approaches to Scheduling Problems, held in Durham, England in
1981, provide some up-to-date surveys. Particular attention is paid to the
interfaces between deterministic and stochastic scheduling. Among the contri-
butors are E.G. Coffman, Jr., M.L. Fisher, J.C. Gittins, E.L. Lawler, M.L.
Pinedo, S. Ross, L.E. Schrage, K. Sevcik and G. Weiss.
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1.2. Surveys

M.J. Gonzalez, Jr. (1977). Deterministic processor scheduling. Comput. Surveys
9, 173-204.

A less than complete selection from the scheduling results available in
1977, aimed at a computer science audience.

R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979). Optim-
ization and approximation in deterministic sequencing and scheduling: a sur-
vey. Ann. Discrete Math. 5, 287-326.

Written on the occasion of the DO77 conference in Vancouver in 1977, this
survey provides a comprehensive review of optimization and approximation
algorithms, including complexity results and worst case performance bounds,
based on the problem classification sketched above. More than 150 references
to the literature are listed. Need we say more?

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1982). Recent developments
in deterministic sequencing and scheduling: a survey. M.A.H. Dempster, J.K.
Lenstra, A.-H.G. Rinnooy Kan (eds.). Deterministic and Stochastic Scheduling,
Reidel, Dordrecht, 35-73.

On the occasion of the summer school on deterministic and stochastic
scheduling in Durham, England in 1981, the preceding survey was revised to
contain information on results up to 1981.

E.L. Lawler, J.K. Lenstra (1982). Machine scheduling with precedence con-
traints. I. Rival (ed.). Ordered Sets, Reidel, Dordrecht, 655-675.

Presented at the Symposium on Ordered Sets in Banff in 1981, this survey
provides an exposition of the basic results in precedence constrained schedul-
ing, including a treatment of the influence of so-called series-parallel con-
straints.

J.K. Lenstra, A -H.G. Rinnooy Kan (1984). Two open problems in precedence
constrained scheduling. Ann. Discrete Math.

A contribution to the sequel of the Banff meeting, held in Lyon in 1982,
this small survey deals with two open questions concerning scheduling unit-
time jobs subject to precedence constraints, as well as a few new 9NP-hardness
results.

J. Carlier, P. Chrétienne (1982). Un domaine trés ouvert: les problémes
d’ordonnancement. RAIRO Rech. Opér. 16, 175-217.

Written in French, this survey is in a sense an update of [Coffman 1976]
(see §1.1), with emphasis on contributions by the authors. It is not so much a
complete treatment as an attempt to focus on some of the main problem types
and solution techniques.
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E.L. Lawler (1983). Recent results in the theory of machine scheduling. A.
Bachem, M. Grétschel, B. Korte (eds.). Mathematical Programming: the State
of the Art - Bonn 1982, Springer, Berlin, 202-234.

A tutorial at the 11th International Symposium on Mathematical Program-
ming in Bonn in 1982, this paper emphasizes polynomial algorithms and
reviews a number of open problems.

E.G. Coffman, Jr., M.R. Garey, D.S. Johnson (1983). Approximation Algo-
rithms for Bin-Packing - an Updated Survey, Bell Laboratories, Murray Hill,
NJ.

This survey provides an overview of the analysis of approximation algo-
rithms for the minimization of maximum completion time on identical parallel
machines and for the related bin packing problem of minimizing the number of
machines subject to a given bound on the maximum completion time.

D.S. Johnson (1983). The NP-completeness column: an ongoing guide. J.
Algorithms 4, 189-203.

The seventh in a series of updates on [Garey & Johnson 1979] (see §1.1),
this column surveys two types of complexity issues around parallel machine
models: first the parallelization of algorithms and secondly the design and
scheduling of multiprocessor systems.

S.C. Graves (1981). A review of production scheduling. Oper. Res. 29, 646-
675.

This well-written survey deals with a wide range of sequencing and lot-
sizing problems. A review of the practice of production scheduling leads to
various challenging research questions. More than 100 references are given.

1.3. Classification

The problem classification sketched above was introduced in [Conway,
Maxwell & Miller 1967] (see §1.1) and refined in [Graham, Lawler, Lenstra &
Rinnooy Kan 1979] (see §1.2). In addition, the following papers are relevant.

B.J. Lageweg, JK. Lenstra, EL. Lawler, AH.G. Rinnooy Kan (1982).
Computer-aided complexity classification of combinatorial problems. Comm.
ACM 25, 817-822.

A computer program is described that maintains a record of the known
complexity results for a structured class of combinatorial problems. Given list-
ings of well-solvable and 9NP-hard problems, the program employs a reducibil-
ity relation defined on the class to classify each problem as easy, hard or open
and to produce listings of the hardest easy problems, the easiest open ones,
the hardest open ones and the easiest hard ones. The application of the pro-
gram to a class of 120 single machine problems is demonstrated.



170 J.K. Lenstra, A.H.G. Rinnooy Kan

B.J. Lageweg, E.L. Lawler, J K. Lenstra, A H.G. Rinnooy Kan (1981). Com-
puter Aided Complexity Classification of Deterministic Scheduling Problems,
Report BW 138, Centre for Mathematics and Computer Science, Amsterdam.

This documents the results obtained by application of the abceve-mentioned
program to a class of 4536 scheduling problems.

N. Hefetz, I. Adiri (1982). A note on the influence of missing operations on
scheduling problems. Naval Res. Logist. Quart. 29, 535-539.

If the processing time of an operation is equal to zero, this can be inter-
preted to mean that the processing time is infinitesimally small, but also that
the operation does not exist. These interpretations are by no means
equivalent, as is demonstrated by various examples.

2. SINGLE MACHINE SCHEDULING: MINMAX CRITERIA
2.1. Maximum lateness

J. Carlier (1982). The one-machine sequencing problem. European J. Oper.
Res. 11, 42-47.

Although the problem of minimizing maximum lateness on a single
machine subject to release dates is NP-hard, it possesses sufficient structure to
make it reasonably well solvable in practical terms. A very efficient branch-
and-bound algorithm was developed by McMahon & Florian (Management
Sci. 17 (1975), 782-792) and refined by Lageweg, Lenstra & Rinnooy Kan
(Statist. Neerlandica 30 (1976), 25-41). The author improves over this method
by proposing a different branching rule.

J. Erschler, G. Fontan, C. Merce, F. Roubellat (1982). Applying new domi-
nance concepts to job schedule optimization. European J. Oper. Res. 11, 60-66.
J. Erschler, G. Fontan, C. Merce, F. Roubellat (1983). A new dominance con-
cept in scheduling n jobs on a single machine wiih ready times and due dates.
Oper. Res. 31, 114-127.

Dominance results among schedules may be used in the obvious way to
speed up enumerative procedures. These two papers introduce dominance
based on the (r;,d; )-intervals, assuming that the objective is simply to meet all
due dates. The jobs for which the (r; d; )-interval is minimal under the partial
order defined by inclusion, turn out to play an important role: they may be
assumed to appear in order of nondecreasing r;, and the jobs dominated by
them in the partial order are, roughly speaking, spread around them.

M.R. Garey, D.S. Johnson, B.B. Simons, R.E. Tarjan (1981). Scheduling unit-
time tasks with arbitrary release times and deadlines. SIAM J. Comput. 10,
256-269.

The special case in which all processing times are equal (or, equivalently,
all p; =1 and the r; and d; need not be integral) has been open for a long
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time. In this situation, feasibility of the r; and d; can be tested in O(n log n)
time by what amounts to repeated apphcatlon of a dynamic version of
Jackson’s rule, which gives priority to the available jobs with the smallest d;.

G.N. Frederickson (1983). Scheduling unit-time tasks with integer release times
and deadlines. Inform. Process. Lett. 16, 171-173.

If, in the above problem, all p; = 1 and the r; and d; are integral, then
Jackson’s rule solves the problem in O(n log n) tune Here it is shown how an
optimal schedule can actually be constructed in O (n) time.

2.2. Maximum cost

K.R. Baker, E.L. Lawler, J.K. Lenstra, A.-H.G. Rinnooy Kan (1983). Preemp-
tive scheduling of a single machine to minimize maximum cost subject to
release dates and precedence constraints. Oper. Res. 31, 381-386.

The problem described in the title is solved in O(n?) time by generalizing
Lawler’s algorithm for the case of equal release dates.

C.L. Monma (1980). Scheduling to minimize the maximum job cost. Oper.
Res. 28, 942-951.

Let ¢ indicate the amount of resource consumed (or, if ¢; <0, contributed)
by job j. The problem is to find a job permutation = m.mumzmg the maximum
cumulative cost max; {f o )(2,=lc,,(, »}. This problem is shown to generalize
various scheduling problems An 9¥P-hardness proof and polynomial algo-
rithms for special cases are presented.

C.L. Monma (1981). Sequencing with general precedence constraints. Discrete
Appl. Math. 3, 137-150.

J.B. Sidney (1981). A decomposition algorithm for sequencing with general
precedence constraints. Math. Oper. Res. 6, 190-204.

These papers study under what conditions certain job interchange tech-
niques can cope with general precedence constraints. This typically results in
polynomial solvability for series-parallel constraints and in less complete char-
acterizations of optimality for more complicated structures.

3. SINGLE MACHINE SCHEDULING: MINSUM CRITERIA
3.1. Optimization algorithms: dynamic programming

In the dynamic programming approach to minimizing total cost on a single
machine subject to precedence constraints, the minimum cost of scheduling a
set of jobs is related to the minimum cost of all its subsets that are feasible
with respect to the precedence constraints. The implementation by Baker &
Schrage (Oper. Res. 26 (1978), 111-120, 444-449), in which each feasible subset
receives an integer label within a certain range, produced impressive
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computional results. The labeling is, however, not compact in the sense that,
conversely, not every integer in the range corresponds to a feasible subset.
Thus, there appeared to be room for further improvement.

E.L. Lawler (1979). Efficient Implementation of Dynamic Programming Algo-
rithms for Sequencing Problems, Report BW 106, Centre for Mathematics and
Computer Science, Amsterdam.

An alternative to the implementation scheme of Baker & Schrage is pro-
posed. Time is proportional to n times the number of feasible sets generated,
and space is proportional to n plus the maximum number of feasible sets of
given size.

EP.C. Kao, M. Queyranne (1982). On dynamic programming methods for
assembly line balancing. Oper. Res. 30, 375-390.

Carefully designed experiments confirm that Lawler’s scheme is computa-
tionally superior to the Baker-Schrage scheme.

R.N. Burns, G. Steiner (1981). Single machine scheduling with series-parallel
precedence constraints. Oper. Res. 29, 1195-1207.

A compact labeling scheme is developed for the case that the precedence
constraints are series-parallel.

G. Steiner (1984). Single machine scheduling with precedence constraints of
dimension 2. Math. Oper. Res. 9, 248-259.

The compact labeling scheme from the previous paper is generalized to the
case that the precedence constraints have dimension 2.

E.L. Lawler (1982). Scheduling a Single Machine to Minimize the Number of
Late Jobs, Preprint, Computer Science Division, University of California,
Berkeley.

Three results are presented. One is an O(n log n) algorithm that improves
on an O(n?* method of Kise, Ibaraki & Mine (Oper. Res. 26 (1978), 121-126).
Another is an O(n®) dynamic programming algorithm for finding an optimal
preemptive schedule subject to arbitrary release dates. Finally, the problem
(with equal release dates) is shown to be 91%P-hard when there are deadlines in
addition to due dates.

3.2. Optimization algorithms: branch-and-bound

C.N. Potts, LN. Van Wassenhove (1982). A decomposition algorithm for the
single machine total tardiness problem. Oper. Res. Lert. I, 177-181.

The problem of minimizing total tardiness on a single machine can be
solved in O(n“Epj) (i.e., pseudopolynomial) time by a dynamic programming
algorithm due to Lawler (4nn. Discrete Math. 1 (1977), 331-342), which decom-
poses each problem into subproblems. The authors use a similar
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decomposition approach, but apply the Baker-Schrage method as soon as the
subproblems get sufficiently small. Supported by additional dominance rules,
the algorithm solves problems of up to 100 jobs.

C.N. Potts, LN. Van Wassenhove (1983). An algorithm for single machine
sequencing with deadlines to minimize total weighted completion time. Euro-
pean J. Oper. Res. 12, 379-387.

Lagrangean relaxation of the constraints C; <d; is applied. The multipliers
are constrained so that a simple heuristic for the original problem provides an
optimal solution to the relaxed one.

A.M.A. Hariri, C.N. Potts (1983). An algorithm for single machine sequencing
with release dates to minimize total weighted completion time. Discrete Appl.
Math. 5, 99-109.

In the same spirit as the previous paper, the constraints C;=r; +p; are
dualized. A dynamic version of Smith’s rule (order the jobs in order of nonin-
creasing w; /p;) solves the relaxed problem.

L. Bianco, S. Ricciardelli (1982). Scheduling of a single machine to minimize
total weighted completion time subject to release dates. Naval Res. Logist.
Quart. 29, 151-167.

The same problem, a simpler lower bound, and more elaborate dominance
conditions.

3.3. Approximation algorithms

Theoretically, the best possible heuristics are fully polynomial approximation
schemes, which produce an e-optimal schedule in time polynomial in problem
size and 1/e.

E.L. Lawler (1982). A fully polynomial approximation scheme for the total tar-
diness problem. Oper. Res. Lett. 1, 207-208.

This scheme applies the author’s pseudopolynomial algorithm (Ann.
Discrete Math. 1 (1977), 331-342) to a problem with rescaled processing times.
The running time is O (n/¢).

G.V. Gens, EV. Levner (1981). Fast approximation algorithms for job
sequencing with deadlines. Discrete Appl. Math. 3, 313-318.

This fully polynomial approximation scheme for the problem of minimizing
the weighted number of late jobs requires O(n*log n +n*/e) time. The
emphasis is on the derivation of a tight lower bound so that ideas for the
related knapsack problem can be fruitfully employed.
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3.4. Related models: due date selection

Rather than taking due dates as given, the two papers below treat them as
decision variables.

K.R. Baker, J.W.M. Bertrand (1981). A comparison of due-date selection rules.
AIIE Trans. 13, 123-131.

The problem of minimizing the average due date 2d;/n is investigated
under the assumption that no job may be late and that d; only depends on job
parameters such as r; and p; that are known in advance.

S.S. Panwalkar, M.L. Smith, A. Seidmann (1982). Common due date assign-
ment to minimize total penalty for the one machine scheduling problem. Oper.
Res. 30, 391-399.

A polynomial algorithm is given for the minimization of a weighted sum of
a common due date d, total tardiness, and total earliness = ¥ max{0,d —C i }.

3.5. Related models: minimization of variance

J.J. Kanet (1981). Minimizing variation of flow time in single machine systems.
Management Sci. 27, 1453-1459.

This paper presents a simple algorithm for minimizing the total absolute
difference of job completion times on a single machine, and a heuristic for the
more difficult problem of minimizing variance of completion times.

J.J. Kanet (1981). Minimizing the average deviation of job completion times
about a common due date. Naval Res. Logist. Quart. 28, 643-651.

The total absolute difference between job completion times and a common
due date on a single machine can be minimized by a minor modification of the
first method from the previous paper.

3.6. Related models: minimization of the number of setups

Given a schedule of precedence constrained jobs, a setup is said to occur when
a job does not directly follow one of its immediate predecessors. To the large
literature on this problem, the following papers have been added.

W.R. Pulleyblank (1984). On minimizing setups in precedence constrained
scheduling. Discrete Appl. Math.

NP-Hardness for the case of a bipartite precedence graph is established,
and a polynomial algorithm for (again!) series-parallel constraints is given.

M.M. Syslo (1984). Minimizing the jump number for partially ordered sets: a
graph-theoretic approach. Order I, 7-19.
The results for the case of series-parallel constraints are derived in a
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different manner.

D. Duffus, I. Rival, P. Winkler (1982). Minimizing setups for cycle-free
ordered sets. Proc. Amer. Math. Soc. 85, 509-513.

The obvious lower bound on the minimum number of setups, given by the
Dilworth width minus 1, is shown to be tight for the case that the precedence
graph contains no alternating cycles.

G. Gierz, W. Poguntke (1983). Minimizing setups for ordered sets: a linear
algebraic approach. SIAM J. Algebraic Discrete Meth. 4, 132-144.

A lower bound that dominates the previous one is presented and shown to
be tight for a class slightly more general than series-parallel constraints.

3.7. Related models: two criteria

Given two optimality criteria, the following papers deal with the determination
of the set of Pareto-optimal points.

L.N. Van Wassenhove, L.F. Gelders (1980). Solving a bicriterion scheduling
problem. European J. Oper. Res. 4, 42-48.

A pseudopolynomial algorithm is given for the total completion time and
maximum lateness criteria.

L.N. Van Wassenhove, K.R. Baker (1982). A bicriterion approach to time/cost
trade-offs in sequencing. European J. Oper. Res. 11, 48-54.

A procedure is developed for the maximum completion cost and total
crashing cost criteria; the crashing cost of job j is given by ¢;(b; —p;), where
pj (a;<p;<b;) is a decision variable and a;, b; and ¢; are known. The pro-
cedure is polynomial under additional assumptions on the completion cost

functions.

K.S. Lin (1983). Hybrid algorithm for sequencing with bicriteria. J. Optimiza-
tion Theory Appl. 39, 105-124.

A dynamic programming approach is presented for the total completion
time and total tardiness criteria.

4. NONPREEMPTIVE PARALLEL MACHINE SCHEDULING: INDEPENDENT JOBS
4.1. Optimization algorithms

J.Y -T. Leung (1982). On scheduling independent tasks with restricted execu-
tion times. Oper. Res. 30, 163-171.

The problem of minimizing maximum completion time on m identical
parallel machines can be solved by dynamic programming in O(log
P max log mn?¥ D) time, if the p; can take on at most k different values.
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B. Simons (1983). Multiprocessor scheduling of unit-time jobs with arbitrary
release times and deadlines. SIAM J. Comput. 12, 294-299.

The m-machine generalization of the single machine problem solved in
[Garey, Johnson, Simons & Tarjan 1981] (see §2.1) is considered. An algo-
rithm with running time O (n’log log n) is developed.

B. Simons (1982). On scheduling with release times and deadlines. M.A.H.
Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.). Deterministic and Sto-
chastic Scheduling, Reidel, Dordrecht, 75-88.

This paper surveys polynomial algorithms and 9(¥-completeness results for
scheduling equal-length jobs on one or more identical parallel machines subject
to release dates and deadlines.

I. Meilijson, A. Tamir (1984). Minimizing flow time on parallel identical pro-
cessors with variable unit processing time. Oper. Res. 32, 440-446.

A classical result states that the problem of minimizing total completion
time on identical parallel machines can be solved by the SPT rule, assigning
the jobs to machines in order of nondecreasing p;. If the machines have a
speed that increases over time, the SPT rule remains optimal; if the speed
decreases, the problem becomes 9P-hard.

4.2. Approximation algorithms: identical machines

Unless stated otherwise, the papers in §§4.2—4 consider the minimization of
maximum completion time.

In a list scheduling heuristic, the jobs are placed in a fixed list and, at each
step, the earliest available machine is selected to process the first available job
on the list.

J.0. Achugbue, F.Y. Chin (1981). Bounds on schedules for independent tasks
with similar execution times. J. Assoc. Comput. Mach. 28, 81-99.

For arbitrary list scheduling, tight worst case relative error bounds as a
function of p = p,y/pmin are obtained. E.g., if p<<3, then the bound is equal
t02—1/3\m/3| f m=6,17/10if m = 5and 5/3if m = 3, 4.

B.L. Deuermeyer, D.K. Friesen, M.A. Langston (1982). Scheduling to maxim-
ize the minimum processor finish time in a multiprocessor system. SIAM J.
Algebraic Discrete Meth. 3, 190-196.

For the unusual criterion of maximizing the minimum machine completion
time, the LPT list scheduling heuristic, in which the jobs are listed in order of
nonincreasing p;, is shown to have a worst case ratio of 4/3. While the result is
similar to Graham’s result for minimizing maximum completion time (see, e.g.,
[Coffman 1976] in §1.1), the proof technique is quite different.
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4.3. Approximation algorithms: uniform machines

Y. Cho, S. Sahni (1980). Bounds for list schedules of uniform processors.
SIAM J. Comput. 9, 91-103.

It is known that both arbitrary list scheduling on identical machines and
LPT list scheduling on uniform machines have a worst case ratio tending to 2
if m goes to infinity. Here, it is shown that for arbitrary list scheduling on uni-
form machines, the ratio is not bounded by a constant but increases not faster

than O(Vm ).

D.K. Friesen, M.A. Langston (1983). Bounds for multifit scheduling on uni-
form processors. SIAM J. Comput. 12, 60-70.

The multifit heuristic, which involves repeated application of the first-fit-
decreasing heuristic for bin packing to the packing of jobs in m intervals
[0,Cmax), is extended to uniform machines and shown to have a worst case
ratio between 1.341 and 1.4. This is the best ratio found so far for this model.

4.4. Approximation algorithms: unrelated machines

E. Davis, J.M. Jaffe (1981). Algorithms for scheduling tasks on unrelated pro-
cessors. J. Assoc. Comput. Mach. 28, 721-736.

An adaptation of list scheduling is considered that incorporates a search for
a relatively fast machine for each job. The worst case ratio is shown to be
o(Vm).

5. PREEMPTIVE PARALLEL MACHINE SCHEDULING: INDEPENDENT JOBS
5.1. Optimization algorithms

G. Schmidt (1983). Preemptive Scheduling on Identical Processors with Time
Dependent Availabilities, Bericht 83-4, Fachbereich 20 Informatik, Technische
Universitit Berlin.

In case the machines are available only in certain given time intervals, the
existence of a feasible preemptive schedule can be tested in polynomial time.

C. Martel (1982). Preemptive scheduling with release times, deadlines and due
times. J. Assoc. Comput. Mach. 29, 812-829.

Polymatroidal network flow techniques are used to construct a preemptive
schedule on uniform machines respecting release dates and meeting deadlines
(if it exists) in O (m*n*+n®) time. The algorithm is combined with search tech-
niques to minimize maximum lateness in polynomial time as well.
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6. PARALLEL MACHINE SCHEDULING: PRECEDENCE CONSTRAINED JOBS
6.1. Optimization algorithms: unit-time jobs

The fundamental algorithmic results for scheduling precedenc§ constr.ained
unit-time jobs on m identical parallel machines so as to minimize maximum
completion time are Hu’s algorithm (Oper. Res. 9 (1961), 841-848) for the case
of tree-type constraints and various polynomial algorithms for the case of two
machines. The complexity of the problem is open for every fixed number of
machines greater than two. There are persistent rumors that these problems
have turned out to be well solvable.

O. Marcotte, L.E. Trotter, Jr. (1984). An application of matroid polyhedral
theory to unit-execution time, tree-precedence constrained job scheduling
W.R. Pulleyblank (ed.). Progress in Combinatorial Optimization, Academic
Press, New York, 263-271.

Hu’s algorithm is rederived from a minmax result due to Edmonds on cov-
ering the elements of a matroid (here, a transversal matroid on the jobs) by its
bases (here, so-called feasible machine histories).

C.L. Monma (1982). Linear-time algorithms for scheduling on parallel proces-
sors. Oper. Res. 30, 116-124.

The generalization of Hu’s algorithm to the problem of minimizing max-
imum lateness subject to intree constraints and some other scheduling prob-
lems are implemented to run in linear time by an adapted version of bucket
sorting.

H.N. Gabow (1982). An almost-linear algorithm for two-processor scheduling.
J. Assoc. Comput. Mach. 29, 766-780.

The two-machine problem with arbitrary precedence constraints is solved
by an adaptation of Hu’s algorithm in almost linear time ...

H.N. Gabow, R.E. Tarjan (1983). A linear-time algorithm for a special case of

disjoint set union. Proc. 15th Annual ACM Symp. Theory of Computing, 246-
251.

... and in strictly linear time.

K. Nakajima, J.Y.-T. Leung, S.L. Hakimi (1981). Optimal two processor
scheduling of tree precedence constrained tasks with two execution times. Per-
formance Evaluation 1, 320-330.

The two-machine problem with tree-type constraints and processing times
equal to 1 or 2 is solved by a complicated O(n log n) algorithm. (For practical
purposes, a heuristic due to Kaufman (/EEE Trans. Comput. 23 (1974), 1169-
1174) which has a worst case absolute error of 1, may be more attractive.)
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M.R. Garey, D.S. Johnson, R.E. Tarjan, M. Yannakakis (1983). Scheduling
opposing forests. SIAM J. Algebraic Discrete Meth. 4, 72-93.

The m-machine problem in which the precedence graph is the disjoint
union of an inforest and an outforest is considered. If m is arbitrary, the prob-
lem is NF-hard; if m is fixed, it is solvable in polynomial time; if m = 2,
there is a linear time algorithm.

D. Dolev, M.K. Warmuth (1982). Profile Scheduling of Opposing Forests and
Level Orders, Research report RJ 3553, IBM, San Jose, CA.

Opposing forests can be scheduled in O(n*" ~%log n) time; this improves
over the above algorithm. Level orders, in which any two incomparable jobs
with a common predecessor or successor have identical sets of predecessors
and successors, can be scheduled in O(n™ ~!) time; the case of arbitrary m is
9NP-hard.

D. Dolev, M.K. Warmuth (1982). Scheduling Flat Graphs, Research report RJ
3398, IBM, San Jose, CA.

The theorems and background of the results in the above paper are
presented.

D. Dolev, M.K. Warmuth (1984). Scheduling precedence graphs of bounded
height. J. Algorithms 5, 48-59.

Precedence graphs in which the longest path has at most h arcs can be
scheduled in O (n"™ ~D*1) time. The case 4 = 2 is already 9P-hard.

E. Mayr (1981). Well Structured Programs Are Not Easier to Schedule, Report
STAN-CS-81-880, Department of Computer Science, Stanford University.

The m-machine problem remains M%-hard if the graph has a so-called
hierarchical parallel structure.

6.2. Optimization algorithms: preemptive scheduling

E.L. Lawler (1982). Preemptive scheduling of precedence-constrained jobs on
parallel machines. M.A.H. Dempster, J.K. Lenstra, A-H.G. Rinnooy Kan
(eds.). Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 101-123.

Some well-solvable problems involving the nonpreemptive scheduling of
unit-time jobs turn out to have well-solvable counterparts involving the
preemptive scheduling of jobs with arbitrary processing times. The latter prob-
lems include the minimization of maximum lateness on m identical machines
subject to intree constraints and on two uniform machines subject to release
dates and arbitrary precedence constraints. These results suggest a strong rela-
tionship between the two models.
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6.3. Approximation algorithms

M. Kunde (1981). Nonpreemptive LP-scheduling on homogeneous multiproces-
sor systems. SIAM J. Comput. 10, 151-173.

In critical path list scheduling, the jobs are listed in order of nonincreasing
total processing time of all jobs on the longest path starting at the job in ques-
tion. This rule is investigated for the case of finding nonpreemptive schedules
on identical machines subject to tree-type and chain-type precedence con-
straints. In the former case, the worst case ratio is 2—2/(m +1); in the latter
case, the ratio tends to 5/3 as m goes to infinity.

7. PARALLEL MACHINE SCHEDULING: RELATED MODELS
7.1. Additional resource constraints

The class of scheduling models known as resource constrained project schedul-
ing, in which resources are of a more general nature than machines, has gen-
erated an impressive literature of its own. Virtually all these problems are -
hard in a very strong sense. Below, we list a few publications that appear to be
on the borderline between the general class and the restricted class considered
here.

The first four papers deal with unit-time jobs, arbitrary precedence con-
straints and the maximum completion time criterion.

E.L. Lloyd (1980). List scheduling bounds for UET systems with resources.
Inform. Process. Lett. 10, 28-31.

There are m identical machines and / additional resources h of size Ry;
job j requires ry; units of resource h during its execution (j = Il,..n;
h = 1,..,0). Arbitrary list scheduling is shown to have a tight worst case ratio
of min{m,2—1/m+2ZR,(1—1/m)}.

E.L. Lloyd (1981). Coffman-Graham scheduling of UET task systems with 0-1
resources. Inform. Process. Lert. 12, 40-45.

Here, all R, =1 and all r;;€{0,1}. A generalization of the Coffman-
Graham labeling algorithm (Acta Inform. 1 (1972), 200-213) turns out to have
a similar worst case behavior as arbitrary list scheduling.

E.L. Lloyd (1982). Critical path scheduling with resource and processor con-
straints. J. Assoc. Comput. Mach. 29, 781-811.

A complicated analysis shows that, for the model of [Lloyd 1980] (see
above), the worst case ratio of a generalization of Hu’s algorithm is bounded
by a piecewise linear function of / and m.

J. Blazewicz, J.K. Lenstra, A.-H.G. Rinnooy Kan (1983). Scheduling subject to
resource constraints: classification and complexity. Discrete Appl. Math. 5,
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11-24.

.A detailed complexity classification is given for problems with identical or
uniform machines and various types of resource constraints, parametrized

according to /, R, and max{r,; }, each of which is taken to be equal to 1 or to
an arbitrary integral value.

In another common model, each machine i has its own resource (say, memory)

of size R; and can only process jobs whose resource requirements are no larger
than R;.

T-H. Lai, S. Sahni (1981). Preemptive Scheduling of a Multiprocessor System
with Memories to Minimize L, Technical report 81-20, Computer Science
Department, University of Minnesota, Minneapolis.

A network representation yields a preemptive schedule on identical
machines minimizing maximum lateness in O(n?) time.

T.-H. Lai, S. Sahni (1982). Preemptive Scheduling of Uniform Processors with
Memory, Technical report 82-5, Computer Science Department, University of
Minnesota, Minneapolis.

Linear programming formulations are given for finding preemptive
schedules on uniform machines minimizing maximum completion time and
maximum lateness.

Two yet different models conclude this subsection.

E.L. Lloyd (1981). Concurrent task systems. Oper. Res. 29, 189-201.

Again unit-time jobs, arbitrary precedence constraints and the maximum
completion time criterion. Job j requires g, identical machines during its exe-
cution. The problem is well solvable for m = 2 and 99-hard for m =3. Arbi-
trary list scheduling has a worst case ratio (2m — g a)/(M — gax + 1)

J. Carlier, A.H.G. Rinnooy Kan (1982). Scheduling subject to nonrenewable-
resource constraints. Oper. Res. Lett. 1, 52-55.

If the resources are actually consumed by the jobs (take, e.g., money) and
the machine capacity is not binding (m =n), then minmax problems are well
solvable, even if the amount of resource becomes available gradually over time.

7.2. Periodic scheduling

In (preemptive) periodic scheduling, each job j has a period p; and is to be
executed in each interval (r; +kp;d; tkp;) (k = 0,1,2,..). On a single
machine, the rule that gives priority to the available job with the closest dead-

line is known to construct a feasible schedule, if one exists.

JY.-T. Leung, M.L. Merrill (1980). A note on preemptive scheduling of
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periodic, real-time tasks. Inform. Process. Lert. 11, 115-118.

The problem of deciding feasibility is shown to be 9NP-complete for each
m =1. The above priority rule for m = 1 turns out to provide an exponential
method, in the sense that it is sufficient to verify whether feasibility has been
achieved in a period equal to the least common multiple of the P after which
the schedule repeats itself.

E.L. Lawler, C.U. Martel (1981). Scheduling periodically occurring tasks on
multiple processors. Inform. Process. Lett. 12, 9-12.
The last mentioned result is extended to the case of unrelated machines.

A.A. Bertossi, M.A. Bonuccelli (1983). Preemptive scheduling of periodic jobs
in uniform multiprocessor systems. Inform. Process. Lett. 16, 3-6.

The Lawler-Martel algorithm above allows a more efficient implementation
in the case of uniform machines.

J.Y.-T. Leung, J. Whitehead (1982). On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Performance Evaluation 2, 237-250.

The case of identical machines and equal release dates is solved in pseudo-
polynomial time. The complexity of this problem is still open.

7.3. Restricted starting times

K. Nakajima, S.L. Hakimi (1982). Complexity results for scheduling tasks with
discrete starting times. J. Algorithms 3, 344-361.

A detailed complexity analysis is given for the problem of finding a feasible
nonpreemptive schedule on m identical machines in which each job ; may
start at any one of k; given starting times. Even if the processing times can
assume only two different values, the problem turns out to be NP-complete in
the case that m = 1 and all k;<3 and in the case that m is arbitrary and all
kj = 2. For some more restricted cases, polynomial algorithms are developed.

K. Nakajima, S.L. Hakimi, J.K. Lenstra (1982). Complexity results for
scheduling tasks in fixed intervals on two types of machines. SIAM J. Com-
put. 11, 512-520.

The problem is to find a nonpreemptive schedule on two types of parallel
machines: inexpensive slow machines and expensive fast ones. Job j requires a
processing time p; on a slow machine or g;<<p; on a fast one. Two models are
considered: (a) each job j must be processed in an interval (rj,r; +p;]; (b) each
job j must start at time r;. The objective is to minimize total machine cost.
Both problems turn out to be 9 $-hard. For some special cases, in which all
g; = 1, polynomial algorithms are presented.
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8. OPEN SHOP SCHEDULING
8.1. Optimization algorithms

EL. Lawler, JK. Lenstra, AH.G. Rinnooy Kan (1981). Minimizing max-
imum lateness in a two-machine open shop. Math. Oper. Res. 6, 153-158.
E.L. Lawler, J K. Lenstra, A.H.G. Rinnooy Kan (1982). Erratum. Marh. Oper.
Res. 7, 635.

The problem of finding a preemptive schedule minimizing maximum late-
ness in a two-machine open shop is solved by a linear time algorithm. The
nonpreemptive case is shown to be JNP-hard.

Y. Cho, S. Sahni (1981). Preemptive scheduling of independent jobs with
release and due times on open, flow and job shops. Oper. Res. 29, 511-522.
The existence of a preemptive schedule respecting release dates and dead-
lines in an m-machine open shop can be determined by linear programming.
The analogous problems for two-machine flow and job shops are 99-hard.

T. Fiala (1983). An algorithm for the open-shop problem. Math. Oper. Res. 8,
100-109.

In 2 very original contribution, results from graph theory are invoked to
show that the problem of finding a nonpreemptive schedule minimizing max-
imum completion time in an m-machine open shop can be solved in O (m°n?)
time if max; {Z;p;; }= (16m’logm’+5m")p ,,, where m’ is the roundup of m
to the closest power of 2.

E.L. Lawler, M.G. Luby, V.V. Vazirani (1982). Scheduling open shops with
parallel machines. Oper. Res. Lett. 1, 161-164.

For a generalization of the preemptive open shop problem, in which there
are given speeds s;; at which machine i can process the k th operation of job
Jj» a linear programming formulation minimizes maximum completion time.

8.2. NP-hardness results

J.O. Achugbue, F.Y. Chin (1982). Scheduling the open shop to minimize mean
flow time. SIAM J. Comput. 11, 709-720.

The problem of finding a nonpreemptive schedule minimizing total comple-
tion time in a two-machine open shop, so far a prominent open problem, is
shown to be 9%P-hard through a reduction starting form 3-PARTITION.
Further, tight bounds are derived on the quality of arbitrary schedules and
shortest-processing-time-first schedules for an m -machine open shop.

T. Gonzalez (1982). Unit execution time shop problems. Math. Oper. Res. 7,
57-66.
The problem of finding a nonpreemptive or preemptive schedule
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minimizing total completion time in an m-machine open shop is shown to be
NP-hard, even if p; €{0,1} for all (i,j). Similar results hold for the problems
of minimizing maximum or total completion time in flow and job shops.

9. FLow SHOP SCHEDULING
9.1. Optimization algorithms and 9P-hardness results

F.Y. Chin, L.-L. Tsai (1981). On J-maximal and J-minimal flow-shop
schedules. J. Assoc. Comput. Mach. 28, 462-476.

For special cases of the problem of minimizing maximum completion time
in an m-machine flow shop in which, for some machine 4, p,; = max; {p;}
for all j or p,; = min; {p;} for all j, NP-hardness results complemented by
polynomial algorithms are derived. In addition, bounds on the length of arbi-
trary permutation schedules are derived.

J.O. Achugbue, F.Y. Chin (1982). Complexity and solution of some three-stage
flow shop scheduling problems. Math. Oper. Res. 7, 532-544.

A detailed analysis of the three-machine flow shop problem, in which each
machine may be maximal or minimal in the above sense, leads to an exhaus-
tive complexity classification.

W. Szwarc (1981). Precedence relations of the flow-shop problem. Oper. Res.
29, 400-411.

Conditions are provided under which Johnson’s algorithm for the two-
machine flow shop can be extended to the »-machine case.

W. Szwarc (1983). Flow shop problems with time lags. Management Sci. 29,
477-481.

An extension of the flow shop model is shown to cover many flow shop
problems with time lags. Application of Johnson’s algorithm yields lower and
upper bounds.

J. Grabowski (1982). A new algorithm of solving the flow-shop problem. G.
Feichtinger, P. Kall (eds.). Operations Research in Progress, Reidel, Dordrecht,
57-75.

A new branching scheme is proposed for the permutation flow shop prob-
lem based on an analysis of the transformations required to shorten the critical
path corresponding to the feasible schedule at the current node of the search
tree, and as such related to earlier work by Balas (Oper. Res. 17 (1969), 941-
957). The algorithm uses the bounding scheme developed by Lageweg, Lenstra
& Rinnooy Kan (Oper. Res. 26, (1978), 53-67). Grabowski’s method requires
less time and generates smaller search trees than the method of Lageweg ez al.

J. Grabowski, E. Skubalska, C. Smutnicki (1983). On flow shop scheduling



Sequencing and Scheduling 185

with release and due dates to minimize maximum lateness. J. Oper. Res. Soc.
34, 615-620.

The above approach is extended to the minimization of maximum lateness
subject to release dates.

9.2. Approximation algorithms

I. Barany (1981). A vector-sum theorem and its application to improving flow
shop guarantees. Math. Oper. Res. 6, 445-452.

A surprising geometrical argument leads to a flow shop heuristic that
requires O(m>n?+m®n) time and whose absolute error is bounded by (m —1)
(Bm — 1)pmax/2. A remarkable feature of this result is that the error does not
depend on n.

H. Rock, G. Schmidt (1982). Machine Aggregation Heuristics in Shop Schedul-
ing, Bericht 82-11, Fachbereich 20 Informatik, Technische Universitét Berlin.

Aggregation heuristics proceed by replacing m machines by two machines,
on which the job processing times are given by the appropriate sums of the
original processing times. The worst case ratios of such heuristics are propor-
tional to m.

C.N. Potts (1981). Analysis of Heuristics for Two-Machine Flow-Shop Sequenc-
ing Subject to Release Dates, Report BW 150, Centre for Mathematics and
Computer Science, Amsterdam.

For the problem of minimizing maximum completion time in a two-
machine flow shop subject to release dates, three heuristics with worst case
ratio 2 are presented. Repeated application of one of them, that is inspired by
a dynamic application of Johnson’s algorithm to a modified version of the
problem, reduces the worst case ratio to 5/3.

9.3. Related models: no wait in process

There has always been a special interest in the flow shop model in which all
operations of a job must be performed without interruption. The problem of
minimizing maximum completion time under this restriction is a special case of
the traveling salesman problem. The case of two machines is solvable in
O(n log n) time by the Gilmore-Gomory algorithm for a special TSP; the case
of four machines was proved 9P-hard by Papadimitriou & Kanellakis (J.
Assoc. Comput. Mach. 27 (1980), 533-549).

H. Rock (1984). The three-machine no-wait flow shop is NP-complete. J.
Assoc. Comput. Mach. 31, 336-345
This settles the open question implied by the paragraph above.

H. Rock (1984). Some new results in flow shop scheduling. Z. Oper. Res. 28,
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-16.

l The problems of minimizing maximum lateness and total completion time
in a two-machine no wait flow shop are shown to be 9P-hard. For the case of
unit processing times and a single additional resource of unit size, an
O(n log n) time algorithm is presented.

10. JoB SHOP SCHEDULING
10.1. Optimization algorithms

The problem of minimizing maximum completion time in a job shop is NP-
hard, even in the case of three machines and unit processing times and in the
case of two machines and processing times equal to 1 or 2 (Lenstra & Rinnooy
Kan, Ann. Discrete Math. 4 (1979), 121-140). Below, N denotes the total
number of operations of all jobs.

N. Hefetz, 1. Adiri (1982). An efficient optimal algorithm for the two-machines
unit-time jobshop schedule-length problem. Math. Oper. Res. 7, 354-360.

The above problem with two machines and unit processing times is shown
to be solvable in O(N) time, through a rule that gives priority to the longest
remaining job.

P. Brucker (1981). Minimizing maximum lateness in a two-machine unit-time
job shop. Computing 27, 367-370.

In the same model, maximum lateness can be minimized in O (N log N)
time; the priority of a job now depends on the difference between its due date
and its number of operations.

P. Brucker (1982). A linear time algorithm to minimize maximum lateness for
the two-machine, unit-time, job-shop, scheduling problem. R.F. Drenick, F.
Kozn (eds.). System Modeling and Optimization, Lecture Notes in Control and
Information Sciences 38, Springer, Berlin, 566-571.

The previous algorithm can be implemented to run in O (N) time.

M.L. Fisher, B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan (1983). Surro-
gate duality relaxation for job shop scheduling. Discrete Appl. Math. 5, 65-75.

As part of the continuing (and, so far, rather fruitless) attack on the general
job shop problem, computational experience is reported with surrogate duality
relaxations of capacity and precedence constraints. Although the lower
bounds dominate the classical ones and also those obtained by Lagrangean
relaxation, a lot of time is required for their computation. The notorious 10-job
10-machine problem remains unsolved.
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11. PROBABILISTIC SCHEDULING MODELS

Probability theory finds application in scheduling in two ways. The first one is
through a probabilistic analysis of the performance of scheduling rules: given a
probability distribution over the class of problem instances, the behavior of a
random variable representing the performance is investigated. The second way
arises when certain job data are no longer assumed to be known in advance;
for example, the processing time of a job may be a random variable, whose
realization becomes known at the job’s completion. The term stochastic schedul-
ing is usually reserved for the latter interpretation. We list a few typical refer-
ences in both areas. Ch.6, §7.3, gives more references on the probabilistic
analysis of scheduling algorithms.

11.1. Probabilistic analysis

P.G. Gazmuri (1981). Probabilistic Analysis of a Machine Scheduling Problem,
Unpublished manuscript.

The problem of minimizing total completion time on a single machine sub-
ject to release dates is studied under the assumption that processing times as
well as release dates are independent and identically distributed. For each of
two cases characterized by the relation between expected processing time and
expected interarrival time, a heuristic is developed whose relative error tends to
0 in probability.

E.G. Coffman, Jr., G.N. Frederickson, G.S. Lueker (1982). Probabilistic
analysis of the LPT processor scheduling heuristic. M.A.H. Dempster, J.K.
Lenstra, A H.G. Rinnooy Kan (eds.). Deterministic and Stochastic Scheduling,
Reidel, Dordrecht, 319-331.

The average performance of the longest-processing-time-first rule, used to
minimize maximum completion time on m identical parallel machines, is stu-
died under the assumption that processing times are uniformly distributed on
(0,1]. The ratio of exgected LPT schedule length to expected optimal length is
bounded by 1+ O (m /n?).

11.2. Stochastic scheduling

G. Weiss (1982). Multiserver stochastic scheduling. M.A.H. Dempster, J.K.
Lenstra, A.H.G. Rinnooy Kan (eds.). Deterministic and Stochastic Scheduling,
Reidel, Dordrecht, 157-179.

This is a survey of stochastic scheduling results for parallel machine
models. Typical examples are the optimality of the longest(shortest)—expecteq-
processing-time rule for minimizing maximum (total) completion time on uni-
form machines, under a variety of assumptions on the distribution of process-
ing times.
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M. Pinedo, L. Schrage (1982). Stochastic shop scheduling: a survey. M.A H.
Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.). Deterministic and Sto-
chastic Scheduling, Reidel, Dordrecht, 181-196.

This survey deals with stochastic scheduling results for open shop, flow
shop (including the no wait case) and job shop models. Most of the stronger
results are for two-machine shops. Much work remains to be done.

12. RELATED SCHEDULING MODELS

This final section is devoted to two scheduling models that do not fit into the
preceding framework.

12.1. Cyclic scheduling

The (k,m)-cyclic staff scheduling problem is to minimize the number of work-
ers in an m-period cyclic schedule such that requirements varying over the
periods are met and each person works for k consecutive periods. In the obvi-
ous integer programming formulation, the coefficient matrix has a special
structure that is capitalized on in the following papers.

J.J. Bartholdi III, H.D. Ratliff (1978). Unnetworks, with applications to idle
time scheduling. Management Sci. 24, 850-858.

The complement of the matrix has exactly m —k ones in each column. On
the basis of this observation, the (5,7)-problem and several related problems
are solved in polynomial time by a series of network flow or matching prob-
lems.

J.J. Bartholdi 1, J.B. Orlin, H.D. Ratliff (1980). Cyclic scheduling via integer
programming with circular ones. Oper. Res. 28, 1074-1085.

The (k,m)-problem is solved by transforming the integer program to a
series of network flow problems. An unusual round-off property allows the
problem also to be solved as a linear program. These techniques are extended
to more general cyclic scheduling problems.

J.J. Bartholdi III (1981). A guaranteed-accuracy round-off algorithm for cyclic
scheduling and set covering. Oper. Res. 29, 501-510.

If the workers are only intermittently available, the cyclic staff scheduling
problem turns out to be NP-hard, but the linear-programming round-off tech-
nique has an acceptable worst case absolute error.

12.2. Hierarchical scheduling

Often, scheduling is the last step in a sequence of planning decisions, where
each decision affects the form and the constraints of its successors. If resources
have to be acquired under uncertainty about what will be required of them,
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multistage stochastic integer programming formulations in which the schedul-
ing decision appears at the last stage are a natural class of models. In the fol-
lowing papers, heuristics with strong properties of asymptotic optimality are
developed for such models. The probabilistic analyses in question are based on
accurate estimates of the value of an optimal schedule.

M.A.H. Dempster, M.L. Fisher, L. Jansen, B.J. Lageweg, J.K. Lenstra, A.H.G.
Rinnooy Kan (1981). Analytical evaluation of hierarchical planning systems.
Oper. Res. 29, 707-716.

This introductory paper provides the motivation for the approach sketched
above and gives some preliminary results.

M.A.H. Dempster, M.L. Fisher, L. Jansen, B.J. Lageweg, J.K. Lenstra, A.H.G.
Rinnooy Kan (1983). Analysis of heuristics for stochastic programming:
results for hierarchical scheduling problems. Math. Oper. Res. 8, 525-537.

Results are presented for the case that the scheduling problem involves the
minimization of maximum completion time on a set of identical or uniform
parallel machines that has to be acquired when only the number of jobs and
the probability distribution of their processing times are known.

M.A H. Dempster (1982). A stochastic approach to hierarchical planning and
scheduling. M.AH. Dempster, J.K. Lenstra, A -H.G. Rinnooy Kan (eds.).
Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 271-296.

This paper includes a survey of relevant results in stochastic scheduling and
discusses some interesting open questions.

J.B.G. Frenk, A.H.G. Rinnooy Kan, L. Stougie (1984). A hierarchical schedul-
ing problem with a well-solvable second stage. Ann. Oper. Res. 1.

Here, the scheduling problem involves the minimization of total completion
time.

J.K. Lenstra, A.H.G. Rinnooy Kan, L. Stougie (1984). A framework for the
probabilistic analysis of hierarchical planning systems. Ann. Oper. Res. I.

Relations between various measures of asymptotic optimality are derived,
and general conditions are established under which a two-stage heuristic is
asymptotically clairvoyant with probability 1.



